博鱼5月8日凌晨,苹果发布了地表最强平板,采用M4芯片的iPad Pro。M4芯片带来了极致的AI性能,用官方的话来说:“比当今任何AI PC的任何神经引擎都强博鱼·体育(中国)官方入口!”
苹果发布之后的第6天,Open AI宣布最新的旗舰大模型GPT-4o来了。不仅免费可用,更是横跨听、看、说。
紧跟着Open AI,谷歌坐不住了。第二天 I/O 2024开发者大会上,谷歌宣布了Gemini系列大模型的更新。Gemini 1.5 Pro不仅面向所有人开放,上下文窗口还从100万token直接一步迈向200万,一口气能读1500页PDF。
在Open AI和谷歌的大战后的6天后,微软不声不响地再次向AI的湖水中投入一块巨石,提出了“Copilot+PCs”的概念。
与此前主机厂频频展示但概念模糊的“AI PC”相比,微软给出了更明晰的定位。Windows系统层面,集成了刚刚问世的GPT-4o;在硬件层面,内置的骁龙X Elite芯片可以在不依赖云端算力的情况下,本地处理生成式AI应用。
微软的清晰定位,戳破了很多厂商还在遮遮掩掩的模糊概念,带来的两个拷问特点就是:AI PC到底需要什么样的硬件?又需要什么样智能体?
比如,为了体现第一款Surface Pro的性能,微软拿出苹果MacBook Air一较高下。根据微软官方测试,新款Surface Pro的多线程性能相比苹果的MacBook Air高58%。
微软还强调想要被称为 Copilot+PC,至少需要提供 40 TOPs 的性能。而苹果这个月刚刚发布的M4芯片,NPU算力正好是38 TOPs。
自从今年AI PC逐渐成为个人电脑领域的热词后,苹果就一直在渲染Mac是消费者可以买到的最好的AI PC。按照苹果的说法,自从2020年第一款M系列的芯片M1推出时,带有NPU的M1就是为AI而生。
苹果CEO蒂姆库克曾在今年年初提到,“目前市面上用于人工智能的电脑,没有比Mac更好的。”
要提到Mac的最大槽点,非“祖传”的8G内存莫属。距离库克上一次升级内存已经过去了7年,这7年中Mac系列机型始终没有提升过内存的起步配置。
对此苹果方面声称,Mac使用的8GB统一内存(Unified Memory)与竞争对手的16GB内存(Memory)相当,官方给出的答复是8GB内存足以驾驭上网、播放视频、轻量编辑等很多任务。
运行AI大模型需要大容量的显存是众所周知的事情。伯克利大学的研究团队发现,未来内存墙可能将会是比算力更大的瓶颈,GPU的显存容量严重制约了可训练的模型规模和算力提升速度,或将成为阻碍AI技术发展与落地的重要瓶颈。
GPU的显存如果只有8GB水平,无论开发者如何进行优化,想要容纳一个千亿参数的大模型也只能是巧妇难为无米之炊。
如果想要配置一台能够畅玩AI 的电脑,那么大多数人的意见都会是32GB起步的内存。实际上,在2024中国闪存市场峰会上,英特尔甚至更为激进地表示,未来AI PC入门级标配一定是32G内存,而当前16G内存一定会被淘汰。
实际上,虽然对于AI PC 在软件、系统层面的争论还在继续,但硬件层面,厂商都不约而同达成了共识:需配备NPU、CPU和GPU的异构计算平台。
目前推出AI PC芯片的厂商有四家:英特尔、AMD、高通、苹果。不过苹果属于自产自销,因此我们不多讨论。英特尔在AI PC芯片进展中保持领先,AMD相关产品迭代速度更快,高通AI PC芯片的端侧AI推理能力优于英特尔及AMD,未来预计逐步抢占更多市场份额。
这是英特尔在2023年年底发布的Meteor Lake,采用Intel 4(7nm)制程工艺的计算模块,多达 6 个性能核,8 个能效核,以及 2 个低功耗岛能效核,一共加起来会支持 22 个线程。
目前,Meteor Lake AI PC已经赢得了100多家ISV独立软件供应商的支持,AI加速功能已经超过300项,AI大模型加速优化已经超过500项。
AMD也提供 AI PC的芯片。AMD在去年推出了锐龙7040,同样搭载NPU。此后,AMD又发布了锐龙8040处理器。锐龙8040系列开发代号Hawk Point,仍然基于Zen4 CPU架构、RDNA3 GPU架构、XDNA NPU架构博鱼·体育(中国)官方入口。目前,搭载AMD 锐龙8040处理器的AI PC包括华硕ROG幻14 Air笔记本、华硕天选、华硕a 豆、华硕无畏。
此外,AMD相关产品相比友商更新迭代速度更快,例如在美国东部时间4月16日,AMD宣布推出两款新产品锐龙(Ryzen)Pro 8040系列和锐龙Pro 8000系列,惠普、联想等厂商会在今年年底前推出搭载锐龙Pro 8040系列芯片的AI PC。
高通的AI PC芯片是在去年10月发布的骁龙 X Elite/X Plus。由台积电4nm工艺制程打造,搭载了全新定制的Oryon CPU,在4+4+4的三丛集中,12颗核心的主频均可达到3.4GHz。
前文提到,微软认为真正的AI PC需要算力达到 40 TOPs。这对于AI PC的芯片层面提出了一个新的要求。
英特尔Meteor Lake的综合算力在34 TOPS左右,NPU算力在10TOPS左右,官宣可以支持200亿大模型在终端侧运行;AMD的锐龙8040的整体算力在39 TOPS,NPU的AI算力在16 TOPS;高通骁龙X Elite NPU的算力则达到了45TOPS,官宣可支持130亿参数大模型的本地运行。
总体上来看,芯片算力层面,高通优势最为突出。计算速度层面(频率),AMD处理指令的速度更为突出。功耗层面,AMD芯片优势突出。核心数方面,英特尔的并行处理数据能力更强。
值得注意的是,英特尔已经宣布了自己的下一代笔记本芯片Lunar Lake,将可以提供超过100 TOPS的性能,其中神经处理单元(NPU)能够提供45 TOPS。而这一性能,也达到了英特尔此前在台北人工智能峰会上提出的下一代AI PC所需的45 TOPS NPU的性能门槛。
实际上,根据《AI PC产业(中国)白皮书》,当端侧混合AI算力达到10TOPS,可以在本地完成如设备智能管理、图像增强、游戏调优等特定场景的 AI模型推理任务;AI算力达到 40TOPS 时,可以在与GPU或云端配合情况下,完成工作、学习、娱乐等场景的大部分 AI 创作类的需求。
在1月初,微软往 Windows 键盘塞了一枚全新的 Copilot 键,迎来近三十年的首次改版,只需点击一下按钮,用户就可以和 Copilot 进行无缝亲密的互动。而现在,微软的 Copilot 键,用户可以直接访问包括 OpenAI 的 GPT-4o 在内的最新模型。
微软是首个将GPT-4o快速整合到终端的企业,当然,考虑到微软和Open AI的关系博鱼·体育(中国)官方入口,双方的合作应该很早就已经开始。
实际上,无论硬件层面如何要求,一台PC上能够在本地运行、搭载大模型才能算一台合格的AI PC。在分析机构看来,未来的AI PC产品将更像是用户的个人AI助理,这需要将个人大模型、个人知识库、个人Agent嵌入到设备中以实现AI PC的多模态自然语言交互,大幅提升意图理解能力。
从目前市场上的端侧大模型来看,一个符合常理的规律是:设备端越大(功能越多),其端侧大模型的参数量也越大。例如最近商汤亮相的“日日新5.0”,采用混合专家架构(MOE),是国内首个全面对标甚至超越GPT-4 Turbo的大模型,参数规模达到6000亿。
我们可以来看看目前发布的能够搭载大模型的PC。华为的首款AI PC产品MateBook X Pro上,支持华为自家的盘古大模型以及文心一言、讯飞星火、智谱清言等第三方合作大模型。在个人智能体方面,华为AI PC的电脑管家中设有AI空间,内置100多个智能体,覆盖文案创作、编程等多种能力,为用户带去AI新体验。
联想通过大模型压缩技术对阿里通义千问大模型进行压缩,压缩后的大模型称为Lenovo AI Now模型,加上在个人智能体方面,联想发布了业内首款AI PC个人智能体——联想小天。
荣耀发布的AI PC 产品MagicBook Pro 16中,搭载荣耀语音助手「YOYO 助理」,帮助用户完成语义搜索、文档总结、服务推荐、辅助创作等。
200亿的参数已成为AI PC目前可以支撑的较高水平,对于大模型厂商来说,如何提供轻量级大模型是一个问题。
目前的主流方式是借助大模型压缩技术,可以在不显著降低模型性能的前提下,节省存储空间、提高计算效率、加速推理过程。比如知识蒸馏、模型量化和权重剪枝等,将数据类型转化为int8甚至int4,从而进一步减少推理过程中的算力需求。
如果能够将更多复杂的大模型在PC端实现高效运行,那么未来除了OpenAI的GPT系列,阿里云的通义千问、腾讯混元、百度文心系列等等,都有可能成为端侧AI PC的重要组成部分。比如,在大模型、AIGC应用方面,荣耀就已同百度达成合作。
在早期大模型还没有如此火热的是很好,很多爱好者和研究者都会自己组装,选择在本地电脑上折腾这些开源大模型或者开源项目。
那么,在市面上攒一台可以训练个人大模型的台式机,大概需要多少钱呢?粗略计算各组件的成本如下:
可以看到,组装一个本地跑大模型的台式机价格大概在1.1万到4万之间。通常来说,台式机不需要考虑便携性和体积,价格要比笔记本电脑便宜。
IDC对于价格方面比较保守,从IDC统计的数据中,AI笔记本电脑平均销售单价将在5500~6500元区间,AI台式机电脑平均单价约4000元。
虽然调研机构预计2024年以后需求增长和性能提升将推动AI PC销售均价继续提升,但是整体会呈现“初期高定价,中后期价格下降”的趋势,下降幅度取决于芯片等硬件设备方面的降本空间。但是在AI PC刚发布初期,这个价格和性能还不足以让消费大众砸钱换新机。
伴随着AI CPU与Windows12的发布,2024年将成为AI PC规模性出货的元年,2027年AI PC将成为主流化的PC产品类型,未来五年全球PC产业将深入迈入AI PC时代。IDC预计未来五年全球AI PC的复合增长率将达到126%,中国AI PC市场渗透率预计将于2027年增长至85%左右。AI PC将成为全国及中国PC市场发展的主要驱动力。
硬件层来看,处理器芯片、内存、散热、交互将是主要收益领域;模型层来看,未来针对各行业的垂直端侧模型将成为主要发展趋势,进而支持传统软件的AI转型以及AI原生应用的发展;终端层来看,各主流PC厂商玩家正加快AI PC相关产品布局。
从芯片生态能力来看,英特尔Ultra芯片生态综合能力更强,拥有更多的头部大模型及AI PC品牌商等生态合作伙伴。
2023Q2开始,头部厂商陆续推出了ThinkPad14、EliteBook805等AI PC初期产品,且这一趋势在2023下半年开始进一步提速,各大厂商相继推出更多性能更强的AI PC新品。根据各大厂商表述与产品进展,2024年各头部厂商将推出一波采用AI加速的新机型,及时为用户提供差异化体验。
惠普、戴尔、联想、宏基和华硕都表示,计划与英特尔和AMD 的新CPU产品路线图同步推出全新 AI PC,在 2024-2025 年 Windows 更新期间产品推进市场,为加速设备升级提供机会。
AI PC应用场景主要包括垂直行业类应用场景以及通用型应用场景。垂直类行业应用场景主要包括教育类垂直应用场景、医疗类垂直应用场景、法律类应用场景以及金融类应用场景等。通用型应用场景是指AI PC能够针对工作、学习、生活等场景,提供个性化创作服务、私人秘书服务、设备管家服务在内的个性化服务。
AI应用软件生态处于初级阶段,同时国际主流个人AI应用软件在国内受限,国内软件应用生态待发展。各垂类细分领域应用场景仍需要进一步的开发。在AIPC时代,在端侧部署本地大模型仅是基础,重要的是要构建AIOS交互界面和生态,其能调用的应用与模型数量和质量直接决定了用户的AI体验。目前还处于待开发阶段。
从产业链发展趋势来看,上游AI PC芯片“CPU+NPU+GPU”异构方案将成主流,并支持用户对AI PC芯片进行二次开发,同时端侧模型呈现轻量化、行业垂直化、个性化发展趋势。中游各PC品牌主流玩家均继续加速布局AI PC赛道,短期来看,联想AI PC综合实力更强,但是长期来看,具有手机品牌的电脑厂商基于其可以将手机及电脑打通的生态优势,将具有更大的AI PC发展潜力。下游政务、医疗及教育行业将成为AI PC落地场景的主要赋能行业。
从产品发展趋势来看,未来AI PC产品将主要包括两类,一类是具有高AI算力的AI PC产品,另一类是具有低AI算力的AI PC产品。高AI算力AI PC产品可运行大量垂直行业细分领域的端侧大模型,低AI算力AI PC产品的端侧大模型主要围绕语音、文字和图像处理等。
从商业模式发展趋势来看,随着未来AI软件侧及相关技术的进一步发展与落地,AI PC中的AI助手会采取与WPS类似的商业模式,根据服务的不同等级设置不同的价格。
从生态体系发展趋势来看,PC终端厂商将承担起行业生态组织者的使命,以场景需求为基础面向用户整合产业资源,成为 PC 产业生态的核心中枢。AI模型技术厂商将重点开发轻量化与针对各垂直行业的端侧大模型博鱼·体育(中国)官方入口、提供模型个性化微调服务以及将自身模型解耦和适配AI PC个人智能体。传统应用厂商需要和模型厂商合作,将传统应用升级为大模型赋能应用;长期则需进行更为彻底的重构,将自身转型为AI原生应用。AI应用商店将聚合AI原生应用和由AI赋能的应用博鱼·体育(中国)官方入口,并提供便捷的检索和下载支持。芯片厂商将注重建立通用、兼容的AI开发框架,并降低大模型和应用开发适配门槛模型,提供具有高效能普惠型智能算力的芯片。
从总体上来看,智能设备作为人工智能触达用户的载体,AI PC将深入变革PC产业。生成式AI和LLM的飞跃式发展,深刻变革了个人生活与工作模式,加速各行各业智能化转型。AI发展正从软件主导转向硬件+软件并行驱动,而智能设备作为AI触达用户的终极载体,正成为AI未来发展与落地的重要突破口。AI PC将AI模型与PC结合,带来架构设计、交互方式、内容、应用生态等创新,将深入变革PC产业。